The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 3

Displaying 41 – 52 of 52

Showing per page

When is every order ideal a ring ideal?

Melvin Henriksen, Suzanne Larson, Frank A. Smith (1991)

Commentationes Mathematicae Universitatis Carolinae

A lattice-ordered ring is called an OIRI-ring if each of its order ideals is a ring ideal. Generalizing earlier work of Basly and Triki, OIRI-rings are characterized as those f -rings such that / 𝕀 is contained in an f -ring with an identity element that is a strong order unit for some nil l -ideal 𝕀 of . In particular, if P ( ) denotes the set of nilpotent elements of the f -ring , then is an OIRI-ring if and only if / P ( ) is contained in an f -ring with an identity element that is a strong order unit....

When Min ( G ) - 1 has a clopen π -base

Ramiro Lafuente-Rodriguez, Warren Wm. McGovern (2021)

Mathematica Bohemica

It is our aim to contribute to the flourishing collection of knowledge centered on the space of minimal prime subgroups of a given lattice-ordered group. Specifically, we are interested in the inverse topology. In general, this space is compact and T 1 , but need not be Hausdorff. In 2006, W. Wm. McGovern showed that this space is a boolean space (i.e. a compact zero-dimensional and Hausdorff space) if and only if the l -group in question is weakly complemented. A slightly weaker topological property...

When spectra of lattices of z -ideals are Stone-Čech compactifications

Themba Dube (2017)

Mathematica Bohemica

Let X be a completely regular Hausdorff space and, as usual, let C ( X ) denote the ring of real-valued continuous functions on X . The lattice of z -ideals of C ( X ) has been shown by Martínez and Zenk (2005) to be a frame. We show that the spectrum of this lattice is (homeomorphic to) β X precisely when X is a P -space. This we actually show to be true not only in spaces, but in locales as well. Recall that an ideal of a commutative ring is called a d -ideal if whenever two elements have the same annihilator and...

Currently displaying 41 – 52 of 52

Previous Page 3