Hereditary radical classes of linearly ordered groups
In this paper we deal with the of an -algebra , where and are nonzero cardinals. It is proved that if is singular and -distributive, then it is . We show that if is complete then it can be represented as a direct product of -algebras which are homogeneous with respect to higher degrees of distributivity.
The infimum of elements a and b of a Hilbert algebra are said to be the compatible meet of a and b, if the elements a and b are compatible in a certain strict sense. The subject of the paper will be Hilbert algebras equipped with the compatible meet operation, which normally is partial. A partial lower semilattice is shown to be a reduct of such an expanded Hilbert algebra i ?both algebras have the same ?lters.An expanded Hilbert algebra is actually an implicative partial semilattice (i.e., a relative...
We show that, consistently, for some regular cardinals θ <λ, there exists a Boolean algebra 𝔹 such that |𝔹| = λ⁺ and for every subalgebra 𝔹'⊆ 𝔹 of size λ⁺ we have Depth(𝔹') = θ.
We give two variations of the Holland representation theorem for -groups and of its generalization of Glass for directed interpolation po-groups as groups of automorphisms of a linearly ordered set or of an antilattice, respectively. We show that every pseudo-effect algebra with some kind of the Riesz decomposition property as well as any pseudo -algebra can be represented as a pseudo-effect algebra or as a pseudo -algebra of automorphisms of some antilattice or of some linearly ordered set.
The aim of the present paper is to study Hopfian and Co-Hopfian objects in categories like the category of rings, the module categories A-mod and mod-A for any ring A. Using Stone's representation theorem any Boolean ring can be regarded as the ring A of clopen subsets of compact Hausdorff totally disconnected space X. It turns out that the Boolean ring A will be Hopfian (resp. co-Hopfian) if and only if the space X is co-Hopfian (resp. Hopfian) in the category Top. For any compact Hausdorff space...