Le théorème de Jordan-Hölder dans certains groupoïdes ordonnés
Uninorms are important generalizations of triangular norms and conorms, with a neutral element lying anywhere in the unit interval, and left (right) semi-uninorms are non-commutative and non-associative extensions of uninorms. In this paper, we firstly introduce the concepts of left and right semi-uninorms on a complete lattice and illustrate these notions by means of some examples. Then, we lay bare the formulas for calculating the upper and lower approximation left (right) semi-uninorms of a binary...
Nos travaux se situent dans le cadre de l'analyse conceptuelle des données. Notre objectif est de généraliser les représentations par variables binaires ou nominales en y adjoignant la modélisation de structures internes. Le problème est de ne pas perdre en complexité algorithmique ce qui est gagné en puissance de représentation. Selon ces considérations, décrire les données et des classes de données par des structures arborescentes semble un bon compromis. Le système de représentation que nous...
The cut completi on of an hl-group G with the abelian increasing part is investigated under the assumption that G is a lexico extension of its hl-subgroup.
Dually residuated lattice ordered monoids (-monoids) are common generalizations of, e.g., lattice ordered groups, Brouwerian algebras and algebras of logics behind fuzzy reasonings (-algebras, -algebras) and their non-commutative variants (-algebras, pseudo -algebras). In the paper, lex-extensions and lex-ideals of -monoids (which need not be commutative or bounded) satisfying a certain natural condition are studied.
In this paper we prove for an hl-loop an assertion analogous to the result of Jakubík concerning lexicographic products of half linearly ordered groups. We found conditions under which any two lexicographic product decompositions of an hl-loop with a finite number of lexicographic factors have isomorphic refinements.