The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

Dedekind cuts in C(X)

Nicolae Dăneţ (2011)

Banach Center Publications

The aim of this paper is to show that every Hausdorff continuous interval-valued function on a completely regular topological space X corresponds to a Dedekind cut in C(X) and conversely.

Direct product decompositions of infinitely distributive lattices

Ján Jakubík (2000)

Mathematica Bohemica

Let α be an infinite cardinal. Let 𝒯 α be the class of all lattices which are conditionally α -complete and infinitely distributive. We denote by 𝒯 σ ' the class of all lattices X such that X is infinitely distributive, σ -complete and has the least element. In this paper we deal with direct factors of lattices belonging to 𝒯 α . As an application, we prove a result of Cantor-Bernstein type for lattices belonging to the class 𝒯 σ ' .

Currently displaying 1 – 7 of 7

Page 1