The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 73

Showing per page

A dyadic view of rational convex sets

Gábor Czédli, Miklós Maróti, Anna B. Romanowska (2014)

Commentationes Mathematicae Universitatis Carolinae

Let F be a subfield of the field of real numbers. Equipped with the binary arithmetic mean operation, each convex subset C of F n becomes a commutative binary mode, also called idempotent commutative medial (or entropic) groupoid. Let C and C ' be convex subsets of F n . Assume that they are of the same dimension and at least one of them is bounded, or F is the field of all rational numbers. We prove that the corresponding idempotent commutative medial groupoids are isomorphic iff the affine space F n ...

Annihilators in BCK-algebras

Radomír Halaš (2003)

Czechoslovak Mathematical Journal

We introduce the concepts of an annihilator and a relative annihilator of a given subset of a BCK-algebra 𝒜 . We prove that annihilators of deductive systems of BCK-algebras are again deductive systems and moreover pseudocomplements in the lattice 𝒟 ( A ) of all deductive systems on 𝒜 . Moreover, relative annihilators of C 𝒟 ( A ) with respect to B 𝒟 ( A ) are introduced and serve as relative pseudocomplements of C w.r.t. B in 𝒟 ( A ) .

Antiassociative groupoids

Milton Braitt, David Hobby, Donald Silberger (2017)

Mathematica Bohemica

Given a groupoid G , , and k 3 , we say that G is antiassociative if an only if for all x 1 , x 2 , x 3 G , ( x 1 x 2 ) x 3 and x 1 ( x 2 x 3 ) are never equal. Generalizing this, G , is k -antiassociative if and only if for all x 1 , x 2 , ... , x k G , any two distinct expressions made by putting parentheses in x 1 x 2 x 3 x k are never equal. We prove that for every k 3 , there exist finite groupoids that are k -antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.

Completely dissociative groupoids

Milton Braitt, David Hobby, Donald Silberger (2012)

Mathematica Bohemica

In a groupoid, consider arbitrarily parenthesized expressions on the k variables x 0 , x 1 , x k - 1 where each x i appears once and all variables appear in order of their indices. We call these expressions k -ary formal products, and denote the set containing all of them by F σ ( k ) . If u , v F σ ( k ) are distinct, the statement that u and v are equal for all values of x 0 , x 1 , x k - 1 is a generalized associative law. Among other results, we show that many small groupoids are completely dissociative, meaning that no generalized associative law holds...

Currently displaying 1 – 20 of 73

Page 1 Next