On the Thue-Mahler equation II
For a real number and a positive integer , let . In this paper, we show that is dense in if and only if and is not a Pisot number. This completes several previous results and answers an open question raised by Erdös, Joó and Komornik [8].
Consider two families of hyperelliptic curves (over ℚ), and , and their respective Jacobians , . We give a partial characterization of the torsion part of and . More precisely, we show that the only prime factors of the orders of such groups are 2 and prime divisors of n (we also give upper bounds for the exponents). Moreover, we give a complete description of the torsion part of . Namely, we show that . In addition, we characterize the torsion parts of , where p is an odd prime, and...
Let K, L be algebraic number fields with K ⊆ L, and , their respective rings of integers. We consider the trace map and the -ideal . By I(L/K) we denote the group indexof in (i.e., the norm of over ℚ). It seems to be difficult to determine I(L/K) in the general case. If K and L are absolutely abelian number fields, however, we obtain a fairly explicit description of the number I(L/K). This is a consequence of our description of the Galois module structure of (Theorem 1). The case...
For any two positive integers and , let be a digraph whose set of vertices is and such that there is a directed edge from a vertex to a vertex if . Let be the prime factorization of . Let be the set of all primes dividing and let be such that and . A fundamental constituent of , denoted by , is a subdigraph of induced on the set of vertices which are multiples of and are relatively prime to all primes . L. Somer and M. Křížek proved that the trees attached to all cycle...