Displaying 261 – 280 of 460

Showing per page

Linear differential equations and multiple zeta values. I. Zeta(2)

Michał Zakrzewski, Henryk Żołądek (2010)

Fundamenta Mathematicae

Certain generating fuctions for multiple zeta values are expressed as values at some point of solutions of linear meromorphic differential equations. We apply asymptotic expansion methods (like the WKB method and the Stokes operators) to solutions of these equations. In this way we give a new proof of the Euler formula ζ(2) = π²/6. In further papers we plan to apply this method to study some third order hypergeometric equation related to ζ(3).

Linear forms in the logarithms of three positive rational numbers

Curtis D. Bennett, Josef Blass, A. M. W. Glass, David B. Meronk, Ray P. Steiner (1997)

Journal de théorie des nombres de Bordeaux

In this paper we prove a lower bound for the linear dependence of three positive rational numbers under certain weak linear independence conditions on the coefficients of the linear forms. Let Λ = b 2 log α 2 - b 1 log α 1 - b 3 log α 3 0 with b 1 , b 2 , b 3 positive integers and α 1 , α 2 , α 3 positive multiplicatively independent rational numbers greater than 1 . Let α j 1 = α j 1 / α j 2 with α j 1 , α j 2 coprime positive integers ( j = 1 , 2 , 3 ) . Let α j max { α j 1 , e } and assume that gcd ( b 1 , b 2 , b 3 ) = 1 . Let b ' = b 2 log α 1 + b 1 log α 2 b 2 log α 3 + b 3 log α 2 and assume that B max { 10 , log b ' } . We prove that either { b 1 , b 2 , b 3 } is c 4 , B -linearly dependent over (with respect to a 1 , a 2 , a 3 ) or Λ > exp - C B 2 j = 1 3 log a j , where c 4 and C = c 1 c 2 log ρ + δ are given in the tables...

Currently displaying 261 – 280 of 460