Linear Recurrence in Boolean Rings. Proof of Klove's Conjecture.
Let , where and , and let be a sequence of integers given by the linear recurrence for . We show that there are a prime number and integers such that no element of the sequence defined by the above linear recurrence is divisible by . Furthermore, for any nonnegative integer there is a prime number and integers such that every element of the sequence defined as above modulo belongs to the set .
We find linear relations among the Fourier coefficients of modular forms for the group Г0+(p) of genus zero. As an application of these linear relations, we derive congruence relations satisfied by the Fourier coefficients of normalized Hecke eigenforms.