The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 3281 – 3300 of 16591

Showing per page

Density of rational points on cyclic covers of n

Ritabrata Munshi (2009)

Journal de Théorie des Nombres de Bordeaux

We obtain upper bound for the density of rational points on the cyclic covers of n . As n our estimate tends to the conjectural bound of Serre.

Density of solutions to quadratic congruences

Neha Prabhu (2017)

Czechoslovak Mathematical Journal

A classical result in number theory is Dirichlet’s theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly k prime factors for k > 1 . Building upon a proof by E. M. Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree n x with k prime factors such that a fixed quadratic equation has exactly 2 k solutions modulo n .

Density of some sequences modulo 1

Artūras Dubickas (2012)

Colloquium Mathematicae

Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer a ≥ 2 the sequence of fractional parts a / n n = 1 is everywhere dense in the interval [0,1]. We prove a similar result for all Pisot numbers and Salem numbers α and show that for each c > 0 and each sufficiently large N, every subinterval of [0,1] of length c N - 0 . 475 contains at least one fractional part Q(αⁿ)/n, where Q is a nonconstant polynomial in ℤ[z] and n is an integer satisfying 1 ≤ n ≤ N.

Currently displaying 3281 – 3300 of 16591