The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 3641 –
3660 of
16591
It is proved that a subspace of a holomorphic Hilbert space is completely determined by their distances to the reproducing kernels. A simple rule is established to localize common zeros of a subspace of the Hardy space of the unit disc. As an illustration we show a series of discs of the complex plan free of zeros of the Riemann -function.
Introduction. Soit θ un élément de ¹=ℝ/ℤ. Considérons la suite des multiples de θ, . Pour tout n ∈ ℕ, ordonnons les n+1 premiers termes de cette suite, 0 = y₀ ≤ y₁ ≤...≤ yₙ ≤ 1 = pθ, p=0,...,n. La suite (y₀,...,yₙ) découpe l’intervalle [0,1] en n+1 intervalles qui ont au plus trois longueurs distinctes, la plus grande de ces longueurs étant la somme des deux autres. Cette propriété a été conjecturé par Steinhaus, elle est étroitement liée au développement en fraction continue de θ. On peut aussi...
Currently displaying 3641 –
3660 of
16591