Effective solution of families of Thue equations containing several parameters
The aim of this paper is to present a unifying approach to the computation of short addition chains. Our method is based upon continued fraction expansions. Most of the popular methods for the generation of addition chains, such as the binary method, the factor method, etc..., fit in our framework. However, we present new and better algorithms. We give a general upper bound for the complexity of continued fraction methods, as a function of a chosen strategy, thus the total number of operations required...
The aim of this paper is to prove an analog of Gras’ conjecture for an abelian field and an odd prime dividing the degree assuming that the -part of group is cyclic.
We explore numerically the eigenvalues of the hermitian formwhen . We improve on the existing upper bound, and produce a (conjectural) plot of the asymptotic distribution of its eigenvalues by exploiting fairly extensive computations. The main outcome is that this asymptotic density most probably exists but is not continuous with respect to the Lebesgue measure.