The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 4441 – 4460 of 16591

Showing per page

Explicit form for the discrete logarithm over the field GF ( p , k )

Gerasimos C. Meletiou (1993)

Archivum Mathematicum

For a generator of the multiplicative group of the field G F ( p , k ) , the discrete logarithm of an element b of the field to the base a , b 0 is that integer z : 1 z p k - 1 , b = a z . The p -ary digits which represent z can be described with extremely simple polynomial forms.

Explicit formulas for the constituent matrices. Application to the matrix functions

R. Ben Taher, M. Rachidi (2015)

Special Matrices

We present a constructive procedure for establishing explicit formulas of the constituents matrices. Our approach is based on the tools and techniques from the theory of generalized Fibonacci sequences. Some connections with other results are supplied. Furthermore,we manage to provide tractable expressions for the matrix functions, and for illustration purposes we establish compact formulas for both the matrix logarithm and the matrix pth root. Some examples are also provided.

Currently displaying 4441 – 4460 of 16591