The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 4601 – 4620 of 16591

Showing per page

Factorisation d'opérateurs différentiels à coefficients dans une extension liouvillienne d'un corps valué

Magali Bouffet (2002)

Annales de l’institut Fourier

On démontre ici un lemme de Hensel pour les opérateurs différentiels. On en déduit un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension liouvillienne transcendante d’un corps valué. On obtient en particulier un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension de ( ( z ) ) par un nombre fini d’exponentielles et de logarithmes algébriquement indépendants sur ( ( z ) ) .

Factorization in Krull monoids with infinite class group

Florian Kainrath (1999)

Colloquium Mathematicae

Let H be a Krull monoid with infinite class group and such that each divisor class of H contains a prime divisor. We show that for each finite set L of integers ≥2 there exists some h ∈ H such that the following are equivalent: (i) h has a representation h = u 1 · . . . · u k for some irreducible elements u i , (ii) k ∈ L.

Factorization of matrices associated with classes of arithmetical functions

Shaofang Hong (2003)

Colloquium Mathematicae

Let f be an arithmetical function. A set S = x₁,..., xₙ of n distinct positive integers is called multiple closed if y ∈ S whenever x|y|lcm(S) for any x ∈ S, where lcm(S) is the least common multiple of all elements in S. We show that for any multiple closed set S and for any divisor chain S (i.e. x₁|...|xₙ), if f is a completely multiplicative function such that (f*μ)(d) is a nonzero integer whenever d|lcm(S), then the matrix ( f ( x i , x i ) ) having f evaluated at the greatest common divisor ( x i , x i ) of x i and x i as its...

Currently displaying 4601 – 4620 of 16591