Primes in Progressions to Prime-Power Modulus.
We prove that given any small but fixed η > 0, a positive proportion of all gaps between consecutive primes are smaller than η times the average gap. We show some unconditional and conditional quantitative results in this vein. In the results the dependence on η is given explicitly, providing a new quantitative way, in addition to that of the first paper in this series, of measuring the effect of the knowledge on the level of distribution of primes.
Let and are conjugate complex algebraic integers which generate Lucas or Lehmer sequences. We present an algorithm to search for elements of such sequences which have no primitive divisors. We use this algorithm to prove that for all and with h, the -th element of these sequences has a primitive divisor for . In the course of proving this result, we give an improvement of a result of Stewart concerning more general sequences.