Displaying 501 – 520 of 1526

Showing per page

Some q-supercongruences for truncated basic hypergeometric series

Victor J. W. Guo, Jiang Zeng (2015)

Acta Arithmetica

For any odd prime p we obtain q-analogues of van Hamme’s and Rodriguez-Villegas’ supercongruences involving products of three binomial coefficients such as k = 0 ( p - 1 ) / 2 [ 2 k k ] q ² 3 ( q 2 k ) / ( ( - q ² ; q ² ) ² k ( - q ; q ) ² 2 k ² ) 0 ( m o d [ p ] ² ) for p≡ 3 (mod 4), k = 0 ( p - 1 ) / 2 [ 2 k k ] q ³ ( ( q ; q ³ ) k ( q ² ; q ³ ) k q 3 k ) ( ( q ; q ) k ² ) 0 ( m o d [ p ] ² ) for p≡ 2 (mod 3), where [ p ] = 1 + q + + q p - 1 and ( a ; q ) = ( 1 - a ) ( 1 - a q ) ( 1 - a q n - 1 ) . We also prove q-analogues of the Sun brothers’ generalizations of the above supercongruences. Our proofs are elementary in nature and use the theory of basic hypergeometric series and combinatorial q-binomial identities including a new q-Clausen type summation formula.

Some quartic number fields containing an imaginary quadratic subfield

Stéphane R. Louboutin (2011)

Colloquium Mathematicae

Let ε be a quartic algebraic unit. We give necessary and sufficient conditions for (i) the quartic number field K = ℚ(ε) to contain an imaginary quadratic subfield, and (ii) for the ring of algebraic integers of K to be equal to ℤ[ε]. We also prove that the class number of such K's goes to infinity effectively with the discriminant of K.

Some Remarkable Identities Involving Numbers

Rafał Ziobro (2014)

Formalized Mathematics

The article focuses on simple identities found for binomials, their divisibility, and basic inequalities. A general formula allowing factorization of the sum of like powers is introduced and used to prove elementary theorems for natural numbers. Formulas for short multiplication are sometimes referred in English or French as remarkable identities. The same formulas could be found in works concerning polynomial factorization, where there exists no single term for various identities. Their usability...

Some remarks on almost rational torsion points

John Boxall, David Grant (2006)

Journal de Théorie des Nombres de Bordeaux

For a commutative algebraic group G over a perfect field k , Ribet defined the set of almost rational torsion points G tors , k ar of G over k . For positive integers d , g , we show there is an integer U d , g such that for all tori T of dimension at most d over number fields of degree at most g , T tors , k ar T [ U d , g ] . We show the corresponding result for abelian varieties with complex multiplication, and under an additional hypothesis, for elliptic curves without complex multiplication. Finally, we show that except for an explicit finite...

Currently displaying 501 – 520 of 1526