The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 28

Displaying 541 – 548 of 548

Showing per page

Run-length function of the Bolyai-Rényi expansion of real numbers

Rao Li, Fan Lü, Li Zhou (2024)

Czechoslovak Mathematical Journal

By iterating the Bolyai-Rényi transformation T ( x ) = ( x + 1 ) 2 ( mod 1 ) , almost every real number x [ 0 , 1 ) can be expanded as a continued radical expression x = - 1 + x 1 + x 2 + + x n + with digits x n { 0 , 1 , 2 } for all n . For any real number x [ 0 , 1 ) and digit i { 0 , 1 , 2 } , let r n ( x , i ) be the maximal length of consecutive i ’s in the first n digits of the Bolyai-Rényi expansion of x . We study the asymptotic behavior of the run-length function r n ( x , i ) . We prove that for any digit i { 0 , 1 , 2 } , the Lebesgue measure of the set D ( i ) = x [ 0 , 1 ) : lim n r n ( x , i ) log n = 1 log θ i is 1 , where θ i = 1 + 4 i + 1 . We also obtain that the level set E α ( i ) = x [ 0 , 1 ) : lim n r n ( x , i ) log n = α is of full Hausdorff dimension...

Currently displaying 541 – 548 of 548

Previous Page 28