Extensions abéliennes non ramifiées de degré premier d'un corps quadratique
We determine all cyclic extensions of prime degree over a -regular number field containing the -roots of unity which are also -regular. We classify these extensions according to the ramification index of the wild place in and to the -valuation of the relative class number (which is the quotient of the ordinary class numbers of and ). We study the case where the is odd prime, since the even case was studien by R. Berger. Our genus theory methods rely essentially on G. Gras...
We generalize a question of Büchi: Let R be an integral domain, C a subring and k ≥ 2 an integer. Is there an algorithm to decide the solvability in R of any given system of polynomial equations, each of which is linear in the kth powers of the unknowns, with coefficients in C? We state a number-theoretical problem, depending on k, a positive answer to which would imply a negative answer to the question for R = C = ℤ. We reduce a negative answer for k = 2 and for...