Sums of the divisor and unitary divisor functions.
Estimates are provided for sth moments of cubic smooth Weyl sums, when 4 ≤ s ≤ 8, by enhancing the author's iterative method that delivers estimates beyond classical convexity. As a consequence, an improved lower bound is presented for the number of integers not exceeding X that are represented as the sum of three cubes of natural numbers.
We describe all sets which represent the quadratic residues in the sense that R = A + A or R = A ⨣ A. Also, we consider the case of an approximate equality R ≈ A + A and R ≈ A ⨣ A and prove that A is then close to a perfect difference set.
1. Introduction. A Sidon set is a set A of integers with the property that all the sums a+b, a,b∈ A, a≤b are distinct. A Sidon set A⊂ [1,N] can have as many as (1+o(1))√N elements, hence N/2 sums. The distribution of these sums is far from arbitrary. Erdős, Sárközy and T. Sós [1,2] established several properties of these sumsets. Among other things, in [2] they prove that A + A cannot contain an interval longer than C√N, and give an example that is possible. In [1] they show that A + A contains...