Displaying 961 – 980 of 1526

Showing per page

Sums of three cubes, II

Trevor D. Wooley (2015)

Acta Arithmetica

Estimates are provided for sth moments of cubic smooth Weyl sums, when 4 ≤ s ≤ 8, by enhancing the author's iterative method that delivers estimates beyond classical convexity. As a consequence, an improved lower bound is presented for the number of integers not exceeding X that are represented as the sum of three cubes of natural numbers.

Sumsets in quadratic residues

I. D. Shkredov (2014)

Acta Arithmetica

We describe all sets A p which represent the quadratic residues R p in the sense that R = A + A or R = A ⨣ A. Also, we consider the case of an approximate equality R ≈ A + A and R ≈ A ⨣ A and prove that A is then close to a perfect difference set.

Sumsets of Sidon sets

Imre Z. Ruzsa (1996)

Acta Arithmetica

1. Introduction. A Sidon set is a set A of integers with the property that all the sums a+b, a,b∈ A, a≤b are distinct. A Sidon set A⊂ [1,N] can have as many as (1+o(1))√N elements, hence  N/2 sums. The distribution of these sums is far from arbitrary. Erdős, Sárközy and T. Sós [1,2] established several properties of these sumsets. Among other things, in [2] they prove that A + A cannot contain an interval longer than C√N, and give an example that N 1 / 3 is possible. In [1] they show that A + A contains...

Supercongruences for the Almkvist-Zudilin numbers

Tewodros Amdeberhan, Roberto Tauraso (2016)

Acta Arithmetica

We prove a conjecture on supercongruences for sequences that have come to be known as the Almkvist-Zudilin numbers. Some other (naturally) related family of sequences will be considered in a similar vain.

Currently displaying 961 – 980 of 1526