S-unit points on analytic hypersurfaces
We prove a conjecture on supercongruences for sequences that have come to be known as the Almkvist-Zudilin numbers. Some other (naturally) related family of sequences will be considered in a similar vain.
Using only elementary arguments, Cassels solved the Diophantine equation (x-1)³ + x³ + (x+1)³ = z² (with x, z ∈ ℤ). The generalization (with x, z, n ∈ ℤ and n ≥ 2) was considered by Zhongfeng Zhang who solved it for k ∈ 2,3,4 using Frey-Hellegouarch curves and their corresponding Galois representations. In this paper, by employing some sophisticated refinements of this approach, we show that the only solutions for k = 5 have x = z = 0, and that there are no solutions for k = 6. The chief innovation...
Soit le -ième nombre premier. Une fonction arithmétique complètement additive est définie sur par la donnée des et la formule , où désigne la...