Displaying 1281 – 1300 of 1340

Showing per page

Truncations of Gauss' square exponent theorem

Ji-Cai Liu, Shan-Shan Zhao (2022)

Czechoslovak Mathematical Journal

We establish two truncations of Gauss’ square exponent theorem and a finite extension of Euler’s identity. For instance, we prove that for any positive integer n , k = 0 n ( - 1 ) k 2 n - k k ( q ; q 2 ) n - k q k + 1 2 = k = - n n ( - 1 ) k q k 2 , where n m = k = 1 m 1 - q n - k + 1 1 - q k and ( a ; q ) n = k = 0 n - 1 ( 1 - a q k ) .

Twists and resonance of L -functions, I

Jerzy Kaczorowski, Alberto Perelli (2016)

Journal of the European Mathematical Society

We obtain the basic analytic properties, i.e. meromorphic continuation, polar structure and bounds for the order of growth, of all the nonlinear twists with exponents 1 / d of the L -functions of any degree d 1 in the extended Selberg class. In particular, this solves the resonance problem in all such cases.

Twists of Hessian Elliptic Curves and Cubic Fields

Katsuya Miyake (2009)

Annales mathématiques Blaise Pascal

In this paper we investigate Hesse’s elliptic curves H μ : U 3 + V 3 + W 3 = 3 μ U V W , μ Q - { 1 } , and construct their twists, H μ , t over quadratic fields, and H ˜ ( μ , t ) , μ , t Q over the Galois closures of cubic fields. We also show that H μ is a twist of H ˜ ( μ , t ) over the related cubic field when the quadratic field is contained in the Galois closure of the cubic field. We utilize a cubic polynomial, R ( t ; X ) : = X 3 + t X + t , t Q - { 0 , - 27 / 4 } , to parametrize all of quadratic fields and cubic ones. It should be noted that H ˜ ( μ , t ) is a twist of H μ as algebraic curves because it may not always have any rational points...

Currently displaying 1281 – 1300 of 1340