The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1281 –
1300 of
1341
We establish two truncations of Gauss’ square exponent theorem and a finite extension of Euler’s identity. For instance, we prove that for any positive integer ,
where
We obtain the basic analytic properties, i.e. meromorphic continuation, polar structure and bounds for the order of growth, of all the nonlinear twists with exponents of the -functions of any degree in the extended Selberg class. In particular, this solves the resonance problem in all such cases.
In this paper we investigate Hesse’s elliptic curves , and construct their twists, over quadratic fields, and over the Galois closures of cubic fields. We also show that is a twist of over the related cubic field when the quadratic field is contained in the Galois closure of the cubic field. We utilize a cubic polynomial, , to parametrize all of quadratic fields and cubic ones. It should be noted that is a twist of as algebraic curves because it may not always have any rational points...
Currently displaying 1281 –
1300 of
1341