Displaying 1321 – 1340 of 16555

Showing per page

An application of Mellin-Barnes type integrals to the mean square of Lerch zeta-functions (II).

Masanori Katsurada (2005)

Collectanea Mathematica

For the Lerch zeta-function Φ(s,x,λ) defined below, the multiple mean square of the form (1.1), together with its discrete and Irbid analogues, (1.2) and (1.3) are investigated by means of Atkinson's [2] dissection method applied to the product Φ(u,x,λ)Φ(υ,x,-λ), where u and υ are independent complex variables (see (4.2)). A complete asymptotic expansion of (1.1) as Im s → ±∞ is deduced from Theorem 1, while those of (1.2) and (1.3) as q → ∞ and (at the same time) as Im s → ±∞ are deduced from Theorems...

An application of metric diophantine approximation in hyperbolic space to quadratic forms.

Sanju L. Velani (1994)

Publicacions Matemàtiques

For any real τ, a lim sup set WG,y(τ) of τ-(well)-approximable points is defined for discrete groups G acting on the Poincaré model of hyperbolic space. Here y is a 'distinguished point' on the sphere at infinity whose orbit under G corresponds to the rationals (which can be regarded as the orbit of the point at infinity under the modular group) in the classical theory of diophantine approximation.In this paper the Hausdorff dimension of the set WG,y(τ) is determined for geometrically finite groups...

An application of Pólya’s enumeration theorem to partitions of subsets of positive integers

Xiao Jun Wu, Chong-Yun Chao (2005)

Czechoslovak Mathematical Journal

Let S be a non-empty subset of positive integers. A partition of a positive integer n into S is a finite nondecreasing sequence of positive integers a 1 , a 2 , , a r in S with repetitions allowed such that i = 1 r a i = n . Here we apply Pólya’s enumeration theorem to find the number ( n ; S ) of partitions of n into S , and the number D P ( n ; S ) of distinct partitions of n into S . We also present recursive formulas for computing ( n ; S ) and D P ( n ; S ) .

An approximation property of quadratic irrationals

Takao Komatsu (2002)

Bulletin de la Société Mathématique de France

Let α > 1 be irrational. Several authors studied the numbers m ( α ) = inf { | y | : y Λ m , y 0 } , where m is a positive integer and Λ m denotes the set of all real numbers of the form y = ϵ 0 α n + ϵ 1 α n - 1 + + ϵ n - 1 α + ϵ n with restricted integer coefficients | ϵ i | m . The value of 1 ( α ) was determined for many particular Pisot numbers and m ( α ) for the golden number. In this paper the value of  m ( α ) is determined for irrational numbers  α , satisfying α 2 = a α ± 1 with a positive integer a .

An arithmetic analogue of Clifford's theorem

Richard P. Groenewegen (2001)

Journal de théorie des nombres de Bordeaux

Number fields can be viewed as analogues of curves over fields. Here we use metrized line bundles as analogues of divisors on curves. Van der Geer and Schoof gave a definition of a function h 0 on metrized line bundles that resembles properties of the dimension l ( D ) of H 0 ( X , ( D ) ) , where D is a divisor on a curve X . In particular, they get a direct analogue of the Rieman-Roch theorem. For three theorems of curves, notably Clifford’s theorem, we will propose arithmetic analogues.

Currently displaying 1321 – 1340 of 16555