The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 77

Displaying 1521 – 1528 of 1528

Showing per page

Systems of quadratic diophantine inequalities

Wolfgang Müller (2005)

Journal de Théorie des Nombres de Bordeaux

Let Q 1 , , Q r be quadratic forms with real coefficients. We prove that for any ϵ > 0 the system of inequalities | Q 1 ( x ) | < ϵ , , | Q r ( x ) | < ϵ has a nonzero integer solution, provided that the system Q 1 ( x ) = 0 , , Q r ( x ) = 0 has a nonsingular real solution and all forms in the real pencil generated by Q 1 , , Q r are irrational and have rank > 8 r .

Currently displaying 1521 – 1528 of 1528

Previous Page 77