The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 9 of 9

Showing per page

Characterization of power digraphs modulo n

Uzma Ahmad, Syed Husnine (2011)

Commentationes Mathematicae Universitatis Carolinae

A power digraph modulo n , denoted by G ( n , k ) , is a directed graph with Z n = { 0 , 1 , , n - 1 } as the set of vertices and E = { ( a , b ) : a k b ( mod n ) } as the edge set, where n and k are any positive integers. In this paper we find necessary and sufficient conditions on n and k such that the digraph G ( n , k ) has at least one isolated fixed point. We also establish necessary and sufficient conditions on n and k such that the digraph G ( n , k ) contains exactly two components. The primality of Fermat number is also discussed.

Complete solution of the Diophantine equation x y + y x = z z

Mihai Cipu (2019)

Czechoslovak Mathematical Journal

The triples ( x , y , z ) = ( 1 , z z - 1 , z ) , ( x , y , z ) = ( z z - 1 , 1 , z ) , where z , satisfy the equation x y + y x = z z . In this paper it is shown that the same equation has no integer solution with min { x , y , z } > 1 , thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.

Congruences for q [ p / 8 ] ( m o d p )

Zhi-Hong Sun (2013)

Acta Arithmetica

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of the integers m and n. Let p ≡ 1 (mod 4) be a prime, q ∈ ℤ, 2 ∤ q and p=c²+d²=x²+qy² with c,d,x,y ∈ ℤ and c ≡ 1 (mod 4). Suppose that (c,x+d)=1 or (d,x+c) is a power of 2. In this paper, by using the quartic reciprocity law, we determine q [ p / 8 ] ( m o d p ) in terms of c,d,x and y, where [·] is the greatest integer function. Hence we partially solve some conjectures posed in our previous two papers.

Currently displaying 1 – 9 of 9

Page 1