The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In the study of the -adic sum of digits function , the arithmetical function and for plays a very important role. In this paper, we firstly generalize the relation between and to a bijective relation between arithmetical functions. And as an application, we investigate some aspects of the sum of digits functions induced by binary infinite Gray codes . We can show that the difference of the sum of digits function, , is realized by an automaton. And the summation formula of the sum...
We analyse the roots of the polynomial for . This is the characteristic polynomial of the recurrence relation for , which includes the relations of several particular sequences recently defined. In the end, a matricial representation for such a recurrence relation is provided.
Currently displaying 1 –
7 of
7