Displaying 41 – 60 of 152

Showing per page

Generalization of a theorem of Steinhaus

C. Cobeli, G. Groza, M. Vâjâitu, A. Zaharescu (2002)

Colloquium Mathematicae

We present a multidimensional version of the Three Gap Theorem of Steinhaus, proving that the number of the so-called primitive arcs is bounded in any dimension.

Ideal version of Ramsey's theorem

Rafał Filipów, Nikodem Mrożek, Ireneusz Recław, Piotr Szuca (2011)

Czechoslovak Mathematical Journal

We consider various forms of Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets of natural numbers. We characterize ideals with properties considered. We show that, in a sense, Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem characterize the same class of ideals. We use our results to show some versions of density Ramsey's theorem (these are similar to generalizations shown in [P....

Kneser’s theorem for upper Banach density

Prerna Bihani, Renling Jin (2006)

Journal de Théorie des Nombres de Bordeaux

Suppose A is a set of non-negative integers with upper Banach density α (see definition below) and the upper Banach density of A + A is less than 2 α . We characterize the structure of A + A by showing the following: There is a positive integer g and a set W , which is the union of 2 α g - 1 arithmetic sequences [We call a set of the form a + d an arithmetic sequence of difference d and call a set of the form { a , a + d , a + 2 d , ... , a + k d } an arithmetic progression of difference d . So an arithmetic progression is finite and an arithmetic sequence...

Logarithmic density of a sequence of integers and density of its ratio set

Ladislav Mišík, János T. Tóth (2003)

Journal de théorie des nombres de Bordeaux

In the paper sufficient conditions for the ( R ) -density of a set of positive integers in terms of logarithmic densities are given. They differ substantially from those derived previously in terms of asymptotic densities.

Maximal upper asymptotic density of sets of integers with missing differences from a given set

Ram Krishna Pandey (2015)

Mathematica Bohemica

Let M be a given nonempty set of positive integers and S any set of nonnegative integers. Let δ ¯ ( S ) denote the upper asymptotic density of S . We consider the problem of finding μ ( M ) : = sup S δ ¯ ( S ) , where the supremum is taken over all sets S satisfying that for each a , b S , a - b M . In this paper we discuss the values and bounds of μ ( M ) where M = { a , b , a + n b } for all even integers and for all sufficiently large odd integers n with a < b and gcd ( a , b ) = 1 .

On a paper of Guthrie and Nymann on subsums of infinite series

J. Nymann, R. Sáenz (2000)

Colloquium Mathematicae

In 1988 the first author and J. A. Guthrie published a theorem which characterizes the topological structure of the set of subsums of an infinite series. In 1998, while attempting to generalize this result, the second author noticed the proof of the original theorem was not complete and perhaps not correct. The present paper presents a complete and correct proof of this theorem.

On a set of asymptotic densities

Pavel Jahoda, Monika Jahodová (2008)

Acta Mathematica Universitatis Ostraviensis

Let = { p 1 , p 2 , , p i , } be the set of prime numbers (or more generally a set of pairwise co-prime elements). Let us denote A p a , b = { p a n + b m n { 0 } ; m , p does not divide m } , where a , b { 0 } . Then for arbitrary finite set B , B holds d p i B A p i a i , b i = p i B d A p i a i , b i , and d A p i a i , b i = 1 p i b i 1 - 1 p i 1 - 1 p i a i . If we denote A = 1 p b 1 - 1 p 1 - 1 p a p , a , b { 0 } , where is the set of all prime numbers, then for closure of set A holds cl A = A B { 0 , 1 } , where B = 1 p b 1 - 1 p p , b { 0 } .

Currently displaying 41 – 60 of 152