The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 16

Displaying 301 – 314 of 314

Showing per page

Un arbre de constantes d'approximation analogue à celui de l'équation diophantienne de Markoff

Serge Perrine (1998)

Journal de théorie des nombres de Bordeaux

La théorie de Markoff classique, construite autour de l’équation diophantienne x 2 + y 2 + z 2 = 3 x y z donne les constantes d’approximation des nombres irrationnels supérieures à ( 1 / 3 ) . Dans le présent article, on explicite une théorie équivalente autour de la valeur ( 1 / 4 ) . Elle est intimement liée à l’équation diophantienne x 2 + y 2 + z 2 = 4 x y z - x pour laquelle on construit explicitement un arbre associé.

Currently displaying 301 – 314 of 314

Previous Page 16