The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 105

Showing per page

On k -Pell numbers which are sum of two Narayana’s cows numbers

Kouèssi Norbert Adédji, Mohamadou Bachabi, Alain Togbé (2025)

Mathematica Bohemica

For any positive integer k 2 , let ( P n ( k ) ) n 2 - k be the k -generalized Pell sequence which starts with 0 , , 0 , 1 ( k terms) with the linear recurrence P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + + P n - k ( k ) for n 2 . Let ( N n ) n 0 be Narayana’s sequence given by N 0 = N 1 = N 2 = 1 and N n + 3 = N n + 2 + N n . The purpose of this paper is to determine all k -Pell numbers which are sums of two Narayana’s numbers. More precisely, we study the Diophantine equation P p ( k ) = N n + N m in nonnegative integers k , p , n and m .

On p -adic zeros of systems of diagonal forms restricted by a congruence condition

Hemar Godhino, Paulo H. A. Rodrigues (2007)

Journal de Théorie des Nombres de Bordeaux

This paper is concerned with non-trivial solvability in p -adic integers of systems of additive forms. Assuming that the congruence equation a x k + b y k + c z k d ( m o d p ) has a solution with x y z 0 ( m o d p ) we have proved that any system of R additive forms of degree k with at least 2 · 3 R - 1 · k + 1 variables, has always non-trivial p -adic solutions, provided p k . The assumption of the solubility of the above congruence equation is guaranteed, for example, if p > k 4 .

On some equations over finite fields

Ioulia Baoulina (2005)

Journal de Théorie des Nombres de Bordeaux

In this paper, following L. Carlitz we consider some special equations of n variables over the finite field of q elements. We obtain explicit formulas for the number of solutions of these equations, under a certain restriction on n and q .

On systems of diophantine equations with a large number of solutions

Jerzy Browkin (2010)

Colloquium Mathematicae

We consider systems of equations of the form x i + x j = x k and x i · x j = x k , which have finitely many integer solutions, proposed by A. Tyszka. For such a system we construct a slightly larger one with much more solutions than the given one.

On the representation of numbers by quaternary and quinary cubic forms: I

C. Hooley (2016)

Acta Arithmetica

On the assumption of a Riemann hypothesis for certain Hasse-Weil L-functions, it is shewn that a quaternary cubic form f(x) with rational integral coefficients and non-vanishing discriminant represents through integral vectors x almost all integers N having the (necessary) property that the equation f(x)=N is soluble in every p-adic field ℚₚ. The corresponding proposition for quinary forms is established unconditionally.

Currently displaying 41 – 60 of 105