The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We establish a dimension formula for the harmonic measure of a finitely supported and symmetric random walk on a hyperbolic group. We also characterize random walks for which this dimension is maximal. Our approach is based on the Green metric, a metric which provides a geometric point of view on random walks and, in particular, which allows us to interpret harmonic measures as quasiconformal measures on the boundary of the group.
For any , let be its dyadic expansion. Call , the -th maximal run-length function of . P. Erdös and A. Rényi showed that almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than , is quantified by their Hausdorff dimension.
Currently displaying 1 –
8 of
8