The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 30 of 30

Showing per page

Explicit upper bounds for |L(1,χ)| when χ(3) = 0

David J. Platt, Sumaia Saad Eddin (2013)

Colloquium Mathematicae

Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.

Extremal values of Dirichlet L -functions in the half-plane of absolute convergence

Jörn Steuding (2004)

Journal de Théorie des Nombres de Bordeaux

We prove that for any real θ there are infinitely many values of s = σ + i t with σ 1 + and t + such that { exp ( i θ ) log L ( s , χ ) } log log log log t log log log log t + O ( 1 ) . The proof relies on an effective version of Kronecker’s approximation theorem.

Currently displaying 21 – 30 of 30

Previous Page 2