The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 42

Showing per page

Sur la structure de la suite des diviseurs d'un entier

Pál Erdös, Gérald Tenenbaum (1981)

Annales de l'institut Fourier

Soit 1 = d 1 < d 2 < < d r = n la suite croissante des diviseurs d’un entier n . Nous étudions ici certaines propriétés de l’ensemble des couples ( d i , d i + 1 ) , 1 < 1 r - 1 , en rapport avec la conjecture d’Erdös affirmant que l’inégalité min i = 1 r - 1 d i + 1 d i 2 a lieu pour presque tout n .

Sur les entiers N pour lesquels il y a beaucoup de groupes abéliens d’ordre N

Jean-Louis Nicolas (1978)

Annales de l'institut Fourier

Soit a ( n ) le nombre de groupes abéliens d’ordre n . Pour étudier les grandes valeurs prises par a ( n ) , on définit, comme l’a fait Ramanujan pour le nombre de diviseurs de n , les nombres a -hautement composés et a -hautement composés supérieurs. Pour calculer ces derniers nombres, on détermine les sommets de l’enveloppe inférieure convexe de la fonction log P ( n ) P ( n ) est le nombre de partitions de n . Sous l’hypothèse de Riemann, on donne un développement asymptotique de l’ordre maximum de la fonction a ( n ) .

Currently displaying 21 – 40 of 42