Sur un problème extrémal en arithmétique
Soit un nombre entier. On développe ici une méthode générale fournissant un équivalent asymptotique de la somme “courte”sous certaines conditions relatives à . Plusieurs applications sont traitées, notamment la preuve d’une conjecture d’Erdös relative à la répartition des diviseurs de !
E. Landau has given an asymptotic estimate for the number of integers up to x whose prime factors all belong to some arithmetic progressions. In this paper, by using the Selberg-Delange formula, we evaluate the number of elements of somewhat more complicated sets. For instance, if ω(m) (resp. Ω(m)) denotes the number of prime factors of m without multiplicity (resp. with multiplicity), we give an asymptotic estimate as x → ∞ of the number of integers m satisfying , all prime factors of m are congruent...