The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
203
We show that if A and B are subsets of the primes with positive relative lower densities α and β, then the lower density of A+B in the natural numbers is at least , which is asymptotically best possible. This improves results of Ramaré and Ruzsa and of Chipeniuk and Hamel. As in the latter work, the problem is reduced to a similar problem for subsets of using techniques of Green and Green-Tao. Concerning this new problem we show that, for any square-free m and any of densities α and β, the...
We extend two results of Ruzsa and Vu on the additive complements of primes.
Suppose that are nonzero real numbers, not all negative, , is a well-spaced set, and the ratio is algebraic and irrational. Denote by the number of with such that the inequality
has no solution in primes , , , . We show that
for any .
1. Introduction. A positive number which is a sum of two odd primes is called a Goldbach number. Let E(x) denote the number of even numbers not exceeding x which cannot be written as a sum of two odd primes. Then the Goldbach conjecture is equivalent to proving that
E(x) = 2 for every x ≥ 4.
E(x) is usually called the exceptional set of Goldbach numbers. In [8] H. L. Montgomery and R. C. Vaughan proved that for some positive constant Δ > 0. In this paper we prove the following result.
Theorem....
Currently displaying 161 –
180 of
203