The search session has expired. Please query the service again.
This paper studies space curves of degree and arithmetic genus , with homogeneous ideal and Rao module , whose main results deal with curves which satisfy (e.g. of diameter, ). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, , at under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of turns out to be equivalent to the...
For each squarefree monomial ideal , we associate a simple finite graph by using the first linear syzygies of . The nodes of are the generators of , and two vertices and are adjacent if there exist variables such that . In the cases, where is a cycle or a tree, we show that has a linear resolution if and only if has linear quotients and if and only if is variable-decomposable. In addition, with the same assumption on , we characterize all squarefree monomial ideals with a...
Let be a finite simple graph with the vertex set and let be its edge ideal in the polynomial ring . We compute the depth and the Castelnuovo-Mumford regularity of when or is a graph obtained from Cohen-Macaulay bipartite graphs , by the operation or operation, respectively.
In this paper, we study the class of
rings in which every flat ideal is
projective. We investigate the stability
of this property under homomorphic image,
and its transfer to various contexts
of constructions such as direct products,
and trivial ring extensions. Our results
generate examples which enrich the
current literature with new and original
families of rings that satisfy this
property.
Currently displaying 81 –
90 of
90