The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
333
Let K be a field, S = K[x 1, … x n] be a polynomial ring in n variables over K and I ⊂ S be an ideal. We give a procedure to compute a prime filtration of S/I. We proceed as in the classical case by constructing an ascending chain of ideals of S starting from I and ending at S. The procedure of this paper is developed and has been implemented in the computer algebra system Singular.
A domain R is called an absolutely S-domain (for short, AS-domain) if each domain T such that R ⊆ T ⊆ qf(R) is an S-domain. We show that R is an AS-domain if and only if for each valuation overring V of R and each height one prime ideal q of V, the extension R/(q ∩ R) ⊆ V/q is algebraic. A Noetherian domain R is an AS-domain if and only if dim (R) ≤ 1. In Section 2, we study a class of R-subalgebras of R[X] which share many spectral properties with the polynomial ring R[X] and which we call pseudo-polynomial...
In the article appeared in this same journal, vol. 33, 1 (1989) pp. 85-97, some statements in the proof of Example 3.4B got scrambled.
In my talk I am going to remind you what is the AK-invariant and give examples of its usefulness. I shall also discuss basic conjectures about this invariant and some positive and negative results related to these conjectures.
This paper is a continuation of the investigation of almost Prüfer v-multiplication domains (APVMDs) begun by Li [Algebra Colloq., to appear]. We show that an integral domain D is an APVMD if and only if D is a locally APVMD and D is well behaved. We also prove that D is an APVMD if and only if the integral closure D̅ of D is a PVMD, D ⊆ D̅ is a root extension and D is t-linked under D̅. We introduce the notion of an almost t-splitting set. denotes the ring , where S is a multiplicatively closed...
In this paper we establish some new characterizations for -rings and Noetherian -rings.
Let R be a unital commutative ring and A a unital R-algebra. We introduce the category of E(A,R)-modules which is a natural extension of the category of E-modules. The properties of E(A,R)-modules are studied; in particular we consider the subclass of E(R)-algebras. This subclass is of special interest since it coincides with the class of E-rings in the case R = ℤ. Assuming diamond ⋄, almost-free E(R)-algebras of cardinality κ are constructed for any regular non-weakly compact cardinal κ > ℵ...
We present an algorithm to compute a primary decomposition of an ideal in a polynomial ring over the integers. For this purpose we use algorithms for primary decomposition in polynomial rings over the rationals, resp. over finite fields, and the idea of Shimoyama-Yokoyama, resp. Eisenbud-Hunecke-Vasconcelos, to extract primary ideals from pseudo-primary ideals. A parallelized version of the algorithm is implemented in Singular. Examples and timings are given at the end of the article.
We give an effective procedure to find minimal bases for ideals of the ring of polynomials over the integers.
Currently displaying 21 –
40 of
333