The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 341 – 360 of 921

Showing per page

A remark on the homotopical dimension of some moduli spaces of stable Riemann surfaces

Gabriele Mondello (2008)

Journal of the European Mathematical Society

Using a result of Harer, we prove certain upper bounds for the homotopical/cohomological dimension of the moduli spaces of Riemann surfaces of compact type, of Riemann surfaces with rational tails and of Riemann surfaces with at most k rational components. These bounds would follow from conjectures of Looijenga and Roth–Vakil.

A remark on the Picard group of spin moduli space

Maurizio Cornalba (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We describe a number of classes in the Picard group of spin moduli space and determine the relations they satisfy; as an application we show that the Picard group in question contains 4-torsion elements.

A remarkable contraction of semisimple Lie algebras

Dmitri I. Panyushev, Oksana S. Yakimova (2012)

Annales de l’institut Fourier

Recently, E.Feigin introduced a very interesting contraction 𝔮 of a semisimple Lie algebra 𝔤 (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of 𝔤 . For instance, the algebras of invariants of both adjoint and coadjoint representations of 𝔮 are free, and also the enveloping algebra of 𝔮 is a free module over its centre.

A representation theorem for a class of rigid analytic functions

Victor Alexandru, Nicolae Popescu, Alexandru Zaharescu (2003)

Journal de théorie des nombres de Bordeaux

Let p be a prime number, p the field of p -adic numbers and p the completion of the algebraic closure of p . In this paper we obtain a representation theorem for rigid analytic functions on 𝐏 1 ( p ) C ( t , ϵ ) which are equivariant with respect to the Galois group G = G a l c o n t ( p / p ) , where t is a lipschitzian element of p and C ( t , ϵ ) denotes the ϵ -neighborhood of the G -orbit of t .

Currently displaying 341 – 360 of 921