On the Diophantine equation ... (X, Y) = ... (x, y).
In this article the discrete logarithm problem in degree 0 class groups of curves over finite fields given by plane models is studied. It is proven that the discrete logarithm problem for non-hyperelliptic curves of genus 3 (given by plane models of degree 4) can be solved in an expected time of , where is the cardinality of the ground field. Moreover, it is proven that for every fixed natural number the following holds: We consider the discrete logarithm problem for curves given by plane models...
We study coprime integer solutions to the equation a³ + b³ⁿ = c² using Galois representations and modular forms. This case represents perhaps the last natural family of generalized Fermat equations descended from spherical cases which is amenable to resolution using the so-called modular method. Our techniques involve an elaborate combination of ingredients, ranging from ℚ-curves and a delicate multi-Frey approach, to appeal to intricate image of inertia arguments.