The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
278
We investigate different concepts of modular deformations of germs of isolated singularities (infinitesimal, Artinian, formal). An obstruction calculus based on the graded Lie algebra structure of the tangent cohomology for modular dcformations is introduced. As the main result the characterisation of the maximal infinitesimally modular subgerm of the miniversal family as flattening stratum of the relative Tjurina module is extended from ICIS to space curve singularities.
We prove a rigidity theorem for semiarithmetic Fuchsian groups: If Γ₁, Γ₂ are two semiarithmetic lattices in PSL(2,ℝ ) virtually admitting modular embeddings, and f: Γ₁ → Γ₂ is a group isomorphism that respects the notion of congruence subgroups, then f is induced by an inner automorphism of PGL(2,ℝ ).
We identify the weight four newform of a modular Calabi-Yau manifold studied by Hulek and Verrill. The main obstacle is that this Calabi-Yau manifold is not rigid and has bad reduction at prime 13. Replacing the original fiber product of elliptic fibrations with a fiberwise Kummer construction we reduce the problem to studying the modularity of a rigid Calabi-Yau manifold with good reduction at primes p ≥ 5.
Let A be a finitely generated associative algebra over an algebraically closed field. We characterize the finite-dimensional A-modules whose orbit closures are local hypersurfaces. The result is reduced to an analogous characterization for orbit closures of quiver representations obtained in Section 3.
Dans cet article, nous étudions les modules libres de type fini sur l’anneau où est l’anneau des éléments analytiques dans une couronne de . D’une part, nous définissons, pour chaque nombre de , un rayon de convergence “générique" et nous montrons que celui-ci dépend continûment de . D’autre part, nous étudions l’existence et l’unicité d’un “antécédent de Frobenius".
Currently displaying 101 –
120 of
278