The search session has expired. Please query the service again.
Sea T una correspondencia algebraica irreducible entre dos variedades proyectivas, V y V', sobre un cuerpo k algebraicamente cerrado y de característica cero. Sea W una subvariedad irreducible de V y W' = T{W} la transformada total de W en T. En [1] se estudia el problema de la conexión de W' y en [3] se estudia el problema de la irreducibilidad de la transformada total de W en correspondencias locales. La finalidad de este artículo es la de aprovechar los resultados de los dos trabajos citados,...
The Briançon-Skoda number of a ring is defined as the smallest integer k, such that for any ideal and , the integral closure of is contained in . We compute the Briançon-Skoda number of the local ring of any analytic irreducible planar curve in terms of its Puiseux characteristics. It turns out that this number is closely related to the Milnor number.
For every holomorphic function in two complex variables with an isolated critical point at the origin we consider the Łojasiewicz exponent ₀(f) defined to be the smallest θ > 0 such that near 0 ∈ ℂ² for some c > 0. We investigate the set of all numbers ₀(f) where f runs over all holomorphic functions with an isolated critical point at 0 ∈ ℂ².
The monodromy conjecture states that every pole of the topological (or related) zeta function induces an eigenvalue of monodromy. This conjecture has already been studied a lot. However in full generality it is proven only for zeta functions associated to polynomials in two variables.In this article we work with zeta functions associated to an ideal. First we work in arbitrary dimension and obtain a formula (like the one of A’Campo) to compute the “Verdier monodromy” eigenvalues associated to an...
Currently displaying 1 –
20 of
26