The search session has expired. Please query the service again.
Displaying 41 –
60 of
168
A matrix is said to have -simple image eigenspace if any eigenvector belonging to the interval is the unique solution of the system in . The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that...
It is a common belief among theoretical physicists that the charge conjugation of the Dirac equation has an analogy in higher dimensional space-times so that in an 8-dimensional space-time there would also be Maiorana spinors as eigenspinors of a charge conjugation, which would swap the sign of the electric charge of the Dirac equation. This article shows that this mistaken belief is based on inadequate distinction between two kinds of charge conjugation: the electric conjugation swapping the sign...
We prove a Chevet type inequality which gives an upper bound for the norm of an isotropic log-concave unconditional random matrix in terms of the expectation of the supremum of “symmetric exponential” processes, compared to the Gaussian ones in the Chevet inequality. This is used to give a sharp upper estimate for a quantity that controls uniformly the Euclidean operator norm of the submatrices with k rows and m columns of an isotropic log-concave unconditional random matrix. We apply these estimates...
It is known that a real symmetric circulant matrix with diagonal entries , off-diagonal entries and orthogonal rows exists only of order (and trivially of order ) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries and any complex entries of absolute value off the diagonal. As a particular case, we consider matrices whose...
A matrix is -clean provided there exists an idempotent such that and . We get a general criterion of -cleanness for the matrix . Under the -stable range condition, it is shown that is -clean iff . As an application, we prove that the -cleanness and unit-regularity for such matrix over a Dedekind domain coincide for all . The analogous for property is also obtained.
In the Fourier theory of functions of one variable, it is common to extend a function and its Fourier transform holomorphically to domains in the complex plane C, and to use the power of complex function theory. This depends on first extending the exponential function eixξ of the real variables x and ξ to a function eizζ which depends holomorphically on both the complex variables z and ζ .Our thesis is this. The natural analog in higher dimensions is to extend a function of m real variables monogenically...
In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball in -dimensional euclidean space . One notable achievement is a compact, convenient formula for the Möbius loop operation , where the operations on the right are those arising from the Clifford algebra (a formula comparable to for the Möbius loop multiplication...
Currently displaying 41 –
60 of
168