The search session has expired. Please query the service again.
Displaying 1781 –
1800 of
3024
If and are two families of unitary bases for , and is a fixed number, let and be subspaces of spanned by vectors in and respectively. We study the angle between and as goes to infinity. We show that when and arise in certain arithmetically defined families, the angles between and may either tend to or be bounded away from zero, depending on the behavior of an associated eigenvalue problem.
Let Ω be the spectral unit ball of Mₙ(ℂ), that is, the set of n × n matrices with spectral radius less than 1. We are interested in classifying the automorphisms of Ω. We know that it is enough to consider the normalized automorphisms of Ω, that is, the automorphisms F satisfying F(0) = 0 and F'(0) = I, where I is the identity map on Mₙ(ℂ). The known normalized automorphisms are conjugations. Is every normalized automorphism a conjugation? We show that locally, in a neighborhood of a matrix with...
We investigate the formal matrix ring over defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system.
Let be the algebraic connectivity, and let be the Laplacian spectral radius of a -connected graph with vertices and edges. In this paper, we prove that
with equality if and only if is the complete graph or . Moreover, if is non-regular, then
where stands for the maximum degree of . Remark that in some cases, these two inequalities improve some previously known results.
We disprove a conjecture made by Rajesh Pereira and Joanna Boneng regarding the upper bound on the number of doubly quasi-stochastic scalings of an n × n positive definite matrix. In doing so, we arrive at the true upper bound for 3 × 3 real matrices, and demonstrate that there is no such bound when n ≥ 4.
Currently displaying 1781 –
1800 of
3024