The ring of quotients of R(S).
We study unitary rings of characteristic 2 satisfying identity for some natural number p. We characterize several infinite families of these rings which are Boolean, i.e., every element is idempotent. For example, it is in the case if or or for a suitable natural number n. Some other (more general) cases are solved for p expressed in the form or where q is a natural number and .
We prove that the semirings of 1-preserving and of 0,1-preserving endomorphisms of a semilattice are always subdirectly irreducible and we investigate under which conditions they are simple. Subsemirings are also investigated in a similar way.
The spectral topology of a ring is easily defined, has familiar applications in elementary Banach algebra theory, and appears relevant to abstract Fredholm and stable range theory.
Recently Umirbaev has proved the long-standing Anick conjecture, that is, there exist wild automorphisms of the free associative algebra over a field of characteristic 0. In particular, the well-known Anick automorphism is wild. In this article we obtain a stronger result (the Strong Anick Conjecture that implies the Anick Conjecture). Namely, we prove that there exist wild coordinates of . In particular, the two nontrivial coordinates in the Anick automorphism are both wild. We establish a...
The structure of the unit group of the group algebra of the group over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.