Displaying 3101 – 3120 of 3997

Showing per page

The rings which are Boolean

Ivan Chajda, Filip Švrček (2011)

Discussiones Mathematicae - General Algebra and Applications

We study unitary rings of characteristic 2 satisfying identity x p = x for some natural number p. We characterize several infinite families of these rings which are Boolean, i.e., every element is idempotent. For example, it is in the case if p = 2 n - 2 or p = 2 n - 5 or p = 2 n + 1 for a suitable natural number n. Some other (more general) cases are solved for p expressed in the form 2 q + 2 m + 1 or 2 q + 2 m where q is a natural number and m 1 , 2 , . . . , 2 q - 1 .

The semiring of 1-preserving endomorphisms of a semilattice

Jaroslav Ježek, Tomáš Kepka (2009)

Czechoslovak Mathematical Journal

We prove that the semirings of 1-preserving and of 0,1-preserving endomorphisms of a semilattice are always subdirectly irreducible and we investigate under which conditions they are simple. Subsemirings are also investigated in a similar way.

The spectral topology in rings

Dragana Cvetković-Ilić, Robin Harte (2010)

Studia Mathematica

The spectral topology of a ring is easily defined, has familiar applications in elementary Banach algebra theory, and appears relevant to abstract Fredholm and stable range theory.

The Strong Anick Conjecture is true

Vesselin Drensky, Jie-Tai Yu (2007)

Journal of the European Mathematical Society

Recently Umirbaev has proved the long-standing Anick conjecture, that is, there exist wild automorphisms of the free associative algebra K x , y , z over a field K of characteristic 0. In particular, the well-known Anick automorphism is wild. In this article we obtain a stronger result (the Strong Anick Conjecture that implies the Anick Conjecture). Namely, we prove that there exist wild coordinates of K x , y , z . In particular, the two nontrivial coordinates in the Anick automorphism are both wild. We establish a...

Currently displaying 3101 – 3120 of 3997