Page 1 Next

Displaying 1 – 20 of 115

Showing per page

A class of quantum doubles of pointed Hopf algebras of rank one

Hua Sun, Yueming Li (2023)

Czechoslovak Mathematical Journal

We construct a class of quantum doubles D ( H D n ) of pointed Hopf algebras of rank one H 𝒟 . We describe the algebra structures of D ( H D n ) by generators with relations. Moreover, we give the comultiplication Δ D , counit ε D and the antipode S D , respectively.

A construction of the Hom-Yetter-Drinfeld category

Haiying Li, Tianshui Ma (2014)

Colloquium Mathematicae

In continuation of our recent work about smash product Hom-Hopf algebras [Colloq. Math. 134 (2014)], we introduce the Hom-Yetter-Drinfeld category H H via the Radford biproduct Hom-Hopf algebra, and prove that Hom-Yetter-Drinfeld modules can provide solutions of the Hom-Yang-Baxter equation and H H is a pre-braided tensor category, where (H,β,S) is a Hom-Hopf algebra. Furthermore, we show that ( A H , α β ) is a Radford biproduct Hom-Hopf algebra if and only if (A,α) is a Hom-Hopf algebra in the category H H . Finally,...

A Maschke type theorem for relative Hom-Hopf modules

Shuangjian Guo, Xiu-Li Chen (2014)

Czechoslovak Mathematical Journal

Let ( H , α ) be a monoidal Hom-Hopf algebra and ( A , β ) a right ( H , α ) -Hom-comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor F from the category of relative Hom-Hopf modules to the category of right ( A , β ) -Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the ( H , α ) -coaction to be separable. This leads to a generalized...

A new approach to antisymmetric infinitesimal bialgebras

Tianshui Ma, Bei Li, Jie Li, Miaoshuang Chen (2023)

Czechoslovak Mathematical Journal

We present a notion of an anti-covariant bialgebra extending the anti-symmetric infinitesimal bialgebra and also provide some equivalent characterizations of it. We also prove that an anti-associative Yang-Baxter pair can produce a special Rota-Baxter system.

A Note on Free Quantum Groups

Teodor Banica (2008)

Annales mathématiques Blaise Pascal

We study the free complexification operation for compact quantum groups, G G c . We prove that, with suitable definitions, this induces a one-to-one correspondence between free orthogonal quantum groups of infinite level, and free unitary quantum groups satisfying G = G c .

A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems

Iván Ezequiel Angiono (2015)

Journal of the European Mathematical Society

We obtain a presentation by generators and relations of any Nichols algebra of diagonal type with finite root system. We prove that the defining ideal is finitely generated. The proof is based on Kharchenko’s theory of PBW bases of Lyndon words. We prove that the lexicographic order on Lyndon words is convex for PBW generators and so the PBW basis is orthogonal with respect to the canonical non-degenerate form associated to the Nichols algebra.

Additive deformations of braided Hopf algebras

Malte Gerhold, Stefan Kietzmann, Stephanie Lachs (2011)

Banach Center Publications

Additive deformations of bialgebras in the sense of J. Wirth [PhD thesis, Université Paris VI, 2002], i.e. deformations of the multiplication map fulfilling a certain compatibility condition with respect to the coalgebra structure, can be generalized to braided bialgebras. The theorems for additive deformations of Hopf algebras can also be carried over to that case. We consider *-structures and prove a general Schoenberg correspondence in this context. Finally we give some examples.

Bar-invariant bases of the quantum cluster algebra of type A 2 ( 2 )

Xueqing Chen, Ming Ding, Jie Sheng (2011)

Czechoslovak Mathematical Journal

We construct bar-invariant [ q ± 1 / 2 ] -bases of the quantum cluster algebra of the valued quiver A 2 ( 2 ) , one of which coincides with the quantum analogue of the basis of the corresponding cluster algebra discussed in P. Sherman, A. Zelevinsky: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J., 4, 2004, 947–974.

Bicrossed products of generalized Taft algebra and group algebras

Dingguo Wang, Xiangdong Cheng, Daowei Lu (2022)

Czechoslovak Mathematical Journal

Let G be a group generated by a set of finite order elements. We prove that any bicrossed product H m , d ( q ) k [ G ] between the generalized Taft algebra H m , d ( q ) and group algebra k [ G ] is actually the smash product H m , d ( q ) k [ G ] . Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of G . As an application, the classification of H m , d ( q ) k [ C n 1 × C n 2 ] is completely presented by generators and relations, where C n denotes the n -cyclic group.

Binomial Skew Polynomial Rings, Artin-Schelter Regularity, and Binomial Solutions of the Yang-Baxter Equation

Gateva-Ivanova, Tatiana (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.Let k be a field and X be a set of n elements. We introduce and study a class of quadratic k-algebras called quantum binomial algebras. Our main result shows that such an algebra A defines a solution of the classical Yang-Baxter equation (YBE), if and only if its Koszul dual A! is Frobenius of dimension n, with a regular socle and for each x, y ∈ X an equality of the type xyy = αzzt, where α ∈ k {0, and z, t ∈ X is satisfied...

Braided coproduct, antipode and adjoint action for U q ( s l 2 )

Pavle Pandžić, Petr Somberg (2024)

Archivum Mathematicum

Motivated by our attempts to construct an analogue of the Dirac operator in the setting of U q ( 𝔰𝔩 n ) , we write down explicitly the braided coproduct, antipode, and adjoint action for quantum algebra U q ( 𝔰𝔩 2 ) . The braided adjoint action is seen to coincide with the ordinary quantum adjoint action, which also follows from the general results of S. Majid.

Braided monoidal categories and Doi-Hopf modules for monoidal Hom-Hopf algebras

Shuangjian Guo, Xiaohui Zhang, Shengxiang Wang (2016)

Colloquium Mathematicae

We continue our study of the category of Doi Hom-Hopf modules introduced in [Colloq. Math., to appear]. We find a sufficient condition for the category of Doi Hom-Hopf modules to be monoidal. We also obtain a condition for a monoidal Hom-algebra and monoidal Hom-coalgebra to be monoidal Hom-bialgebras. Moreover, we introduce morphisms between the underlying monoidal Hom-Hopf algebras, Hom-comodule algebras and Hom-module coalgebras, which give rise to functors between the category of Doi Hom-Hopf...

Canonical characters on simple graphs

Tanja Stojadinović (2013)

Czechoslovak Mathematical Journal

A multiplicative functional on a graded connected Hopf algebra is called the character. Every character decomposes uniquely as a product of an even character and an odd character. We apply the character theory of combinatorial Hopf algebras to the Hopf algebra of simple graphs. We derive explicit formulas for the canonical characters on simple graphs in terms of coefficients of the chromatic symmetric function of a graph and of canonical characters on quasi-symmetric functions. These formulas and...

Categorification of Hopf algebras of rooted trees

Joachim Kock (2013)

Open Mathematics

We exhibit a monoidal structure on the category of finite sets indexed by P-trees for a finitary polynomial endofunctor P. This structure categorifies the monoid scheme (over Spec ℕ) whose semiring of functions is (a P-version of) the Connes-Kreimer bialgebra H of rooted trees (a Hopf algebra after base change to ℤ and collapsing H 0). The monoidal structure is itself given by a polynomial functor, represented by three easily described set maps; we show that these maps are the same as those occurring...

Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra

Xing Wang, Daowei Lu, Ding-Guo Wang (2024)

Czechoslovak Mathematical Journal

We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford’s π -biproduct. Firstly, we discuss the endomorphism monoid End π -Hopf ( A × H , p ) and the automorphism group Aut π -Hopf ( A × H , p ) of Radford’s π -biproduct A × H = { A × H α } α π , and prove that the automorphism has a factorization closely related to the factors A and H = { H α } α π . What’s more interesting is that a pair of maps ( F L , F R ) can be used to describe a family of mappings F = { F α } α π . Secondly, we consider the relationship between the automorphism group Aut π -Hopf ( A × H , p ) and the automorphism group Aut π - 𝒴 𝒟 -Hopf ( A ) of A , and...

Currently displaying 1 – 20 of 115

Page 1 Next