The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1761 –
1780 of
3997
We consider functorially finite subcategories in module categories over Artin algebras. One main result provides a method, in the setup of bounded derived categories, to compute approximations and the end terms of relative Auslander-Reiten sequences. We also prove an Auslander-Reiten formula for the setting of functorially finite subcategories. Furthermore, we study the category of modules filtered by standard modules for certain quasi-hereditary algebras and we classify precisely when this category...
We study equivalences for category of the rational Cherednik algebras of type : a highest weight equivalence between and for and an action of on an explicit non-empty Zariski open set of parameters ; a derived equivalence between and whenever and have integral difference; a highest weight equivalence between and a parabolic category for the general linear group, under a non-rationality assumption on the parameter . As a consequence, we confirm special cases of conjectures...
Let be a semiprime ring and an additive mapping such that holds for all . Then is a left centralizer of . It is also proved that Jordan centralizers and centralizers of coincide.
Let X be a class or R-modules containing 0 and closed under isomorphic images. With any such X we associate three classes ΓX, FX and ΔX. The study of some of the closure properties of these classes allows us to obtain characterization of Artinian modules dualizing results of Chatters. The theory of Dual Glodie dimension as developed by the author in some of his earlier work plays a crucial role in the present paper.
Currently displaying 1761 –
1780 of
3997