The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that the types of singularities of Schubert varieties in the flag varieties Flagₙ, n ∈ ℕ, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔸. Similarly, we prove that the types of singularities of Schubert varieties in products of Grassmannians Grass(n,a) × Grass(n,b), a, b, n ∈ ℕ, a, b ≤ n, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔻. We also show that...
We give a complete description of finite-dimensional selfinjective algebras of Euclidean tilted type over an algebraically closed field whose all nonperiodic Auslander-Reiten components are almost regular. In particular, we describe the tame selfinjective finite-dimensional algebras whose all nonperiodic Auslander-Reiten components are almost regular and generalized standard.
We classify all tame self/injective algebras having simply connected Galois coverings and the stable Auslander-Reiten quivers consisting of stable tubes. Moreover, the classification of nondomestic polynomial growth standard self/injective algebras is completed.
We develop the representation theory of selfinjective algebras which admit Galois coverings by the repetitive algebras of algebras whose derived category of bounded complexes of finite-dimensional modules is equivalent to the derived category of coherent sheaves on a weighted projective line with virtual genus greater than one.
Let R=k(Q,I) be a finite-dimensional algebra over a field k determined by a bound quiver (Q,I). We show that if R is a simply connected right multipeak algebra which is chord-free and -free in the sense defined below then R has the separation property and there exists a preprojective component of the Auslander-Reiten quiver of the category prin(R) of prinjective R-modules. As a consequence we get in 4.6 a criterion for finite representation type of prin(R) in terms of the prinjective Tits quadratic...
Assume that K is an arbitrary field. Let (I,⪯) be a poset of finite prinjective type and let KI be the incidence K-algebra of I. A classification of all sincere posets of finite prinjective type with three maximal elements is given in Theorem 2.1. A complete list of such posets consisting of 90 diagrams is presented in Tables 2.2. Moreover, given any sincere poset I of finite prinjective type with three maximal elements, a complete set of pairwise non-isomorphic sincere indecomposable prinjective...
Let K be an algebraically closed field. Let (Q,Sp,I) be a skewed-gentle triple, and let and be the corresponding skewed-gentle pair and the associated gentle pair, respectively. We prove that the skewed-gentle algebra is singularity equivalent to KQ/⟨I⟩. Moreover, we use (Q,Sp,I) to describe the singularity category of . As a corollary, we find that if and only if if and only if .
We consider a class of algebras whose Auslander-Reiten quivers have starting components that are not generalized standard. For these components we introduce a generalization of a slice and show that only in finitely many cases (up to isomorphism) a slice module is a tilting module.
It is shown that every -graded module over is a direct sum of cyclics. The invariants for such modules are exactly the smooth invariants of valuated abelian -groups.
Let A be a special biserial algebra over an algebraically closed field. We show that the first Hohchshild cohomology group of A with coefficients in the bimodule A vanishes if and only if A is representation-finite and simply connected (in the sense of Bongartz and Gabriel), if and only if the Euler characteristic of Q equals the number of indecomposable non-uniserial projective-injective A-modules (up to isomorphism). Moreover, if this is the case, then all the higher Hochschild cohomology groups...
Let
be an algebraically closed field. Consider a finite dimensional monomial relations algebra
of finite global dimension, where Γ is a quiver and I an admissible ideal generated by a set of paths from the path algebra
. There are many modules over Λ which may be represented graphically by a tree with respect to a top element, of which the indecomposable projectives are the most natural example. These trees possess branches which correspond to right subpaths of cycles in the quiver. A pattern...
In the first part, we study algebras A such that A = R ⨿ I, where R is a subalgebra and I a two-sided nilpotent ideal. Under certain conditions on I, we show that A is standardly stratified if and only if R is standardly stratified. Next, for , we show that A is standardly stratified if and only if the algebra R = U × V is standardly stratified and is a good V-module.
The class of n-fundamental algebras is introduced. It is a subclass of string algebras. For n-fundamental algebras we study the problem of when the Auslander-Reiten quiver contains, at the beginning or at the end, a component which is not generalized standard.
We study the simple connectedness and strong simple connectedness of the following classes of algebras: (tame) coil enlargements of tame concealed algebras and n-iterated coil enlargement algebras.
Let A = kQ/I be a finite dimensional basic algebra over an algebraically closed field k presented by its quiver Q with relations I. A fundamental problem in the representation theory of algebras is to decide whether or not A is of tame or wild type. In this paper we consider triangular algebras A whose quiver Q has no oriented paths. We say that A is essentially sincere if there is an indecomposable (finite dimensional) A-module whose support contains all extreme vertices of Q. We prove that if...
We classify (up to Morita equivalence) all symmetric special biserial algebras of Euclidean type, by algebras arising from Brauer graphs.
Currently displaying 1 –
20 of
20