The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 73

Showing per page

On Auslander–Reiten components for quasitilted algebras

Flávio Coelho, Andrzej Skowroński (1996)

Fundamenta Mathematicae

An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver Γ A of a quasitilted algebra A.

Radicals of symmetric cellular algebras

Yanbo Li (2013)

Colloquium Mathematicae

For a symmetric cellular algebra, we study properties of the dual basis of a cellular basis first. Then a nilpotent ideal is constructed. The ideal connects the radicals of cell modules with the radical of the algebra. It also yields some information on the dimensions of simple modules. As a by-product, we obtain some equivalent conditions for a finite-dimensional symmetric cellular algebra to be semisimple.

Representation fields for commutative orders

Luis Arenas-Carmona (2012)

Annales de l’institut Fourier

A representation field for a non-maximal order in a central simple algebra is a subfield of the spinor class field of maximal orders which determines the set of spinor genera of maximal orders containing a copy of . Not every non-maximal order has a representation field. In this work we prove that every commutative order has a representation field and give a formula for it. The main result is proved for central simple algebras over arbitrary global fields.

Representation theory of two-dimensionalbrauer graph rings

Wolfgang Rump (2000)

Colloquium Mathematicae

We consider a class of two-dimensional non-commutative Cohen-Macaulay rings to which a Brauer graph, that is, a finite graph endowed with a cyclic ordering of edges at any vertex, can be associated in a natural way. Some orders Λ over a two-dimensional regular local ring are of this type. They arise, e.g., as certain blocks of Hecke algebras over the completion of [ q , q - 1 ] at (p,q-1) for some rational prime p . For such orders Λ, a class of indecomposable maximal Cohen-Macaulay modules (see introduction)...

Representation-finite triangular algebras form an open scheme

Stanisław Kasjan (2003)

Open Mathematics

Let V be a valuation ring in an algebraically closed field K with the residue field R. Assume that A is a V-order such that the R-algebra Ā obtained from A by reduction modulo the radical of V is triangular and representation-finite. Then the K-algebra KA ≅ A ⊗V is again triangular and representation-finite. It follows by the van den Dries’s test that triangular representation-finite algebras form an open scheme.

Subcategories of the derived category and cotilting complexes

Aslak Bakke Buan (2001)

Colloquium Mathematicae

We show that there is a one-to-one correspondence between basic cotilting complexes and certain contravariantly finite subcategories of the bounded derived category of an artin algebra. This is a triangulated version of a result by Auslander and Reiten. We use this to find an existence criterion for complements to exceptional complexes.

Currently displaying 41 – 60 of 73