The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let S = Σi=1n Rai be a finite normalizing extension of R and suppose that SM is a left S-module. Denote by crk(A) the dual Goldie dimension of the module A. We show that crk(RM) ≤ n · crk(SM) if either SM is artinian or the group homomorphism M → aiM given by x → aix is an isomorphism.
Based on a lattice-theoretic approach, we give a complete characterization of modules with Fleury's spanning dimension. An example of a non-Artinian, non-hollow module satisfying this finiteness condition is constructed. Furthermore we introduce and characterize the dual notion of Fleury's spanning dimension.
Nous démontrons que dans la catégorie des foncteurs entre espaces vectoriels sur , le produit tensoriel entre le second foncteur injectif standard non constant et un foncteur puissance extérieure est artinien. Seul était antérieurement connu le caractère artinien de cet injectif ; notre résultat constitue une étape pour l’étude du troisième foncteur injectif standard non constant de .Nous utilisons le foncteur de division par le foncteur identité et des considérations issues de la théorie...
In this paper we compute the global dimension of Noetherian rings and rings with Gabriel and Krull dimension by taking a subclass of cyclic modules determined by the Gabriel filtration in the lattice of hereditary torsion theories.
We prove that the Krull-Gabriel dimension of the category of modules over any 1-domestic non-degenerate string algebra is 3.
Les foncteurs entre espaces vectoriels, ou représentations génériques des groupes linéaires d’après Kuhn, interviennent en topologie algébrique et en -théorie comme en théorie des représentations. Nous présentons ici une nouvelle méthode pour aborder les problèmes de finitude et la dimension de Krull dans ce contexte.Plus précisément, nous démontrons que, dans la catégorie des foncteurs entre espaces vectoriels sur , le produit tensoriel entre , où désigne le foncteur projectif , et un foncteur...
A ring is called a left APP-ring if the left annihilator is right -unital as an ideal of for any element . We consider left APP-property of the skew formal power series ring where is a ring automorphism of . It is shown that if is a ring satisfying descending chain condition on right annihilators then is left APP if and only if for any sequence of elements of the ideal
Currently displaying 21 –
40 of
96