Some remarks on global dimensions for cotorsion pairs
In an earlier paper, the second author generalized Eilenberg's variety theory by establishing a basic correspondence between certain classes of monoid morphisms and families of regular languages. We extend this theory in several directions. First, we prove a version of Reiterman's theorem concerning the definition of varieties by identities, and illustrate this result by describing the identities associated with languages of the form (a1a2...ak)+, where a1,...,ak are distinct letters. Next,...
In this paper, we study some properties of -flat -modules, where is a semidualizing module over a commutative ring and we investigate the relation between the -yoke with the -yoke of a module as well as the relation between the -flat resolution and the flat resolution of a module over -closed rings. We also obtain a criterion for computing the -flat dimension of modules.
Seguendo le idee presentate nei lavori [1] e [2] si studiano le proprietà dei gruppi di -omotopia per moduli ed omomorfismi di moduli.
In an earlier paper, the second author generalized Eilenberg’s variety theory by establishing a basic correspondence between certain classes of monoid morphisms and families of regular languages. We extend this theory in several directions. First, we prove a version of Reiterman’s theorem concerning the definition of varieties by identities, and illustrate this result by describing the identities associated with languages of the form , where are distinct letters. Next, we generalize the notions...
It is proved, for various spaces A, such as a surface of genus 2, a figure-eight, or a sphere of dimension ≠ 1,3,7, and for any set Σ of equations, that Σ cannot be modeled by continuous operations on A unless Σ is undemanding (a form of triviality that is defined in the paper).