Exponential laws for topological categories, groupoids and groups, and mapping spaces of colimits
In the first part of this article we formalize the concepts of terminal and initial object, categorical product [4] and natural transformation within a free-object category [1]. In particular, we show that this definition of natural transformation is equivalent to the standard definition [13]. Then we introduce the exponential object using its universal property and we show the isomorphism between the exponential object of categories and the functor category [12].
Using derived categories, we develop an alternative approach to defining Koszulness for positively graded algebras where the degree zero part is not necessarily semisimple.
Two categories and of fuzzy sets over an -algebra are investigated. Full subcategories of these categories are introduced consisting of objects , , where is a subset of all extensional subobjects of an object . It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories.
Soient un anneau commutatif et une -algèbre associative quelconque. Nous calculons le groupe d’homologie de la -algèbre de Lie des matrices de “trace nulle” sur . Le groupe ainsi déterminé est un groupe d’homologie d’un complexe inspiré d’A. Connes; il est isomorphe à lorsque est commutative. Nous obtenons également des résultats pour un groupe d’homologie relative associé à une surjection de -algèbres. Les démonstrations utilisent la classification des extensions centrales et des...