Displaying 1221 – 1240 of 3021

Showing per page

Hardy fields in several variables

Leonardo Pasini (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro si estende il concetto di campo di Hardy [Bou], al contesto dei germi di funzioni in più variabili che sono definite su insiemi semi-algebrici [Br.], [D.] e che risultano essere morfismi di categorie lisce [Pal.]. In tale contesto si dimostra che per ogni campo di Hardy di germi di una fissata categoria liscia 𝒞 , la sua chiusura algebrica relativa nell'anello G 𝒞 , di tutti i germi nella stessa categoria liscia, è un campo di Hardy reale chiuso, che è l'unica chiusura reale del campo...

Heisenberg algebra and a graphical calculus

Mikhail Khovanov (2014)

Fundamenta Mathematicae

A new calculus of planar diagrams involving diagrammatics for biadjoint functors and degenerate affine Hecke algebras is introduced. The calculus leads to an additive monoidal category whose Grothendieck ring contains an integral form of the Heisenberg algebra in infinitely many variables. We construct bases of the vector spaces of morphisms between products of generating objects in this category.

Hereditarity of closure operators and injectivity

Gabriele Castellini, Eraldo Giuli (1992)

Commentationes Mathematicae Universitatis Carolinae

A notion of hereditarity of a closure operator with respect to a class of monomorphisms is introduced. Let C be a regular closure operator induced by a subcategory 𝒜 . It is shown that, if every object of 𝒜 is a subobject of an 𝒜 -object which is injective with respect to a given class of monomorphisms, then the closure operator C is hereditary with respect to that class of monomorphisms.

Higher monodromy.

Polesello, Pietro, Waschkies, Ingo (2005)

Homology, Homotopy and Applications

Higher-dimensional Auslander-Reiten sequences

Jiangsha Li, Jing He (2024)

Czechoslovak Mathematical Journal

Zhou and Zhu have shown that if 𝒞 is an ( n + 2 ) -angulated category and 𝒳 is a cluster tilting subcategory of 𝒞 , then the quotient category 𝒞 / 𝒳 is an n -abelian category. We show that if 𝒞 has Auslander-Reiten ( n + 2 ) -angles, then 𝒞 / 𝒳 has Auslander-Reiten n -exact sequences.

Currently displaying 1221 – 1240 of 3021