Homological algebra and divergent series.
We give a survey of our recent results on homological properties of Köthe algebras, with an emphasis on biprojectivity, biflatness, and homological dimension. Some new results on the approximate contractibility of Köthe algebras are also presented.
We introduce a notion of homological projective duality for smooth algebraic varieties in dual projective spaces, a homological extension of the classical projective duality. If algebraic varieties X and Y in dual projective spaces are homologically projectively dual, then we prove that the orthogonal linear sections of X and Y admit semiorthogonal decompositions with an equivalent nontrivial component. In particular, it follows that triangulated categories of singularities of these sections are...
On étudie ici les notions d’algèbre de Gerstenhaber à homotopie près et d’homologie des algèbres de Gerstenhaber du point de vue de la théorie des opérades. Précisément, on donne une description explicite des -algèbres à homotopie près (c’est-à-dire d’algèbres sur le modèle minimal de l’opérade des algèbres de Gerstenhaber). On décrit également le complexe calculant l’homologie des -algèbres. On donne une suite spectrale qui converge vers cette homologie et quelques exemples de calculs. Enfin...
For a Lie algebroid, divergences chosen in a classical way lead to a uniquely defined homology theory. They define also, in a natural way, modular classes of certain Lie algebroid morphisms. This approach, applied for the anchor map, recovers the concept of modular class due to S. Evens, J.-H. Lu, and A. Weinstein.